10006864 J Clin Psychiatry / Document Archive

Psychiatrist.com Home    Keyword Search

Close [X]

Search Our Sites

Enter search terms below (keywords, titles, authors, or subjects). Then select a category to search and press the Search button. All words are assumed to be required. To search for an exact phrase, put it in quotes. To exclude a term, precede it with a minus sign (-).

Keyword search:

Choose a category:

Choosing the appropriate category will greatly improve your chances of finding the best match.

All files at our sites: J Clin Psychiatry, Primary Care Companion, CME Institute, and MedFair

Search materials from our journals:

Abstracts from The Journal of Clinical Psychiatry, 1996–present, both regular issues and supplements

PDFs of the full text of The Journal of Clinical Psychiatry, 1996–present, both regular issues and supplements (Net Society Platinum [paid subscribers])

PDFs of the full text of The Primary Care Companion to The Journal of Clinical Psychiatry, 1999–present

Search CME offerings:

CME Institute, including CME from journals , supplements, and Web activities for instant CME credit (Net Society Gold [registered users]); also includes information about our CME program

CME activities from regular issues of The Journal of Clinical Psychiatry (Net Society Gold [registered users])

CME Supplements from The Journal of Clinical Psychiatry (Net Society Gold [registered users])

 

The article you requested is

The Neurobiology of the Switch Process in Bipolar Disorder: A Review

J Clin Psychiatry 2010;71(11):1488-1501
10.4088/JCP.09r05259gre
Copyright 2010 Physicians Postgraduate Press, Inc.

To view this item, select one of the options below.

  1. NONSUBSCRIBERS
    1. Purchase this PDF for $30
      If you are not a paid subscriber, you may purchase the PDF.
      (You'll need the free Adobe Acrobat Reader.)
    2. Subscribe
      Receive immediate full-text access to JCP. You can subscribe to JCP online-only ($129) or print + online ($166 individual).
    3. Celebrate JCP's 75th Anniversary with a special online-only subscription price of $75.
  2. PAID SUBSCRIBERS
    1. Activate
      If you are a paid subscriber to JCP and do not yet have a username and password, activate your subscription now.
    2. Sign in
      As a paid subscriber who has activated your subscription, you have access to the HTML and PDF versions of this item.
  1. Did you forget your password?

Still can't log in? Contact the Circulation Department at 1-800-489-1001 x4 or send an email

| 23.20.20.195

Objective: The singular phenomenon of switching from depression to its opposite state of mania or hypomania, and vice versa, distinguishes bipolar disorder from all other psychiatric disorders. Despite the fact that it is a core aspect of the clinical presentation of bipolar disorder, the neurobiology of the switch process is still poorly understood. In this review, we summarize the clinical evidence regarding somatic interventions associated with switching, with a particular focus on the biologic underpinnings presumably involved in the switch process.

Data Sources: Literature for this review was obtained through a search of the MEDLINE database (1966–2008) using the following keywords and phrases: switch, bipolar disorder, bipolar depression, antidepressant, SSRIs, tricyclic antidepressants, norepinephrine, serotonin, treatment emergent affective switch, mania, hypomania, HPA-axis, glucocorticoids, amphetamine, dopamine, and sleep deprivation.

Study Selection: All English-language, peer-reviewed, published literature, including randomized controlled studies, naturalistic and open-label studies, and case reports, were eligible for inclusion.

Data Synthesis: Converging evidence suggests that certain pharmacologic and nonpharmacologic interventions with very different mechanisms of action, such as sleep deprivation, exogenous corticosteroids, and dopaminergic agonists, can trigger mood episode switches in patients with bipolar disorder. The switch-inducing potential of antidepressants is unclear, although tricyclic antidepressants, which confer higher risk of switching than other classes of antidepressants, are a possible exception. Several neurobiological factors appear to be associated with both spontaneous and treatment-emergent mood episode switches; these include abnormalities in catecholamine levels, up-regulation of neurotrophic and neuroplastic factors, hypothalamic-pituitary-adrenal axis hyperactivity, and circadian rhythms.

Conclusions: There is a clear need to improve our understanding of the neurobiology of the switch process; research in this field would benefit from the systematic and integrated assessment of variables associated with switching.

J Clin Psychiatry

Submitted: April 1, 2009; accepted June 9, 2009.

Online ahead of print: May 4, 2010 (doi:10.4088/JCP.09r05259gre)

Corresponding author: Carlos A. Zarate Jr, MD, Experimental Therapeutics, Mood and Anxiety Disorders Program, National Institute of Mental Health, Mark O. Hatfield Clinical Research Center, 10 Center Dr, Unit 7SE, Rm 7-3445, Bethesda, Maryland, 20892-1282 (zaratec@mail.nih.gov).